The Taverna laboratory studies how histone marks contribute to an “epigenetic/histone code” that may dictate chromatin-templated functions like transcriptional activation and gene silencing, as well as how these On/Off states are inherited/ propagated. For example, transcription-modulating protein complexes with PHD finger motifs (methyl lysine “readers”) or Bromodomains (acetyl lysine “readers”) often have enzymatic activities that “write” these same histone marks. To explore these connections we use biochemistry and cell biology in a variety of model organisms ranging from mammals to yeast and ciliates. The lab also investigates links between small RNAs and histone marks involved in gene silencing. Importantly, many histone binding proteins have clear links to human disease, notably melanoma, leukemia, and other cancers.